

 ISSN 2229-6107 www.ijpast.in
 Vol 12, Issuse 1 Jan 2022

Analysis of Crypto-Hardware for Affordable Internet of Things

Dr.K.AMIT BINDAJ1,Mr.T.GANGADHAR2,Mrs.J.RAJYALAXMI3,Mrs.K.YOJANA4,N.SRINIVAS RAO5,

Abstract

In this article, we quantify the performance effect of crypto-hardware by doing a complete resource analysis of commonly used

cryptographic primitives on a variety of commercially available IoT systems. The foundation of this study is the recently developed

crypto-subsystem of the RIOT IoT operating system, which enables cross-component crypto support. I Hardware-based cryptography

provides far better performance than software-based cryptography, as shown by our tests; this is critical for node longevity. However,

moderate memory enhancements are the norm. (ii)There are several factors that influence resource efficiency, including hardware

variety, driver design, and software implementations. Even if they are inefficient for symmetric crypto operations, external crypto-chips

do provide secure write-only memory for private credentials—something that is lacking in many other systems.

Introduction

The foundation of the Internet of Things is security

(IoT). Crypto-operations are necessary for data

privacy, integrity, and accessibility, yet they are

typically inefficient and in contradiction with

device limitations. Software upgrades, access

control systems, and data encryption all need

crypto-operations. Cryptographic primitives,

including potential crypto-extensions, need to be

significantly optimised to offer practical security in

the low-end IoT.

Figure 1. The software support layer of RIOT integrating

crypto-peripherals, external crypto-devices, and cryptolibraries

using a common crypto API.

a formidable obstacle, since hardware support is all

over the place, from incomplete to fully-functional

implementations of widely-used algorithms like

AES. The restricted IoT security choices shown in

Figure 1 are the most often used ones. There are

three types of crypto-related hardware: I

microcontrollers with built-in crypto-peripherals,

(ii) external crypto-devices that interface to the

microcontroller through a communication bus, and

(iii) cryptographic software lib raries that attempt

to deal with embedded limitations. For reasons of

mobility, software libraries avoid using crypto

hardware, while manufacturer SDKs (on bare

metal) decrease freedom in the direction of a

vendor lock-in. The use of an operating system

(OS) is becoming more common in IoT

deployments because it allows applications to

remain portable while providing near-optimal

hardware support via an abstraction layer. One of

the primary goals of this study is to quantify the

resource benefit from making heterogeneous

hardware components consistently available to both

crypto-libraries and apps. Until recently, there has

been little availability of crypto-hardware with

platform independence at the IoT system level.

PROFESSOR1,, Assistant Professor,2,3,4,5,

Mail Id : karpurapu.gavasj@gmail.com,Mail Id : gangadhar4vlsi@gmail.com,

Mail id : rajyalakshmivarshini@gmail.com, Mail Id : yojanak5@gmail.com, Mail Id : nomula09@gmail.com ,

Department of ECE, Swarna Bharati Institute of Science and Technology (SBIT),

Pakabanda Street,Khammam TS, India-507002.

http://www.ijpast.in/
mailto:karpurapu.gavasj@gmail.com,Mail
mailto:gangadhar4vlsi@gmail.com
mailto:rajyalakshmivarshini@gmail.com
mailto:yojanak5@gmail.com,%20Mail
mailto:nomula09@gmail.com

 ISSN 2229-6107 www.ijpast.in
 Vol 12, Issuse 1 Jan 2022

We propose that an Internet of Things operating

system should have standardised APIs that allow

access to any accessible hardware without

compromising on speed or features. We will report

on the many difficulties that arise from using

disparate hardware ideas and having limited

resources, and how they might be overcome by

exchanging software for hardware without reducing

productivity. The following are the paper's

contributions:

We add our crypto subsystem to the IoT operating

system RIOT (2) and discuss design considerations

for integrating various crypto-drivers. A quick

recap of the hardware crypto systems available

today (3). The third section compares the

efficiency of five software libraries (4), the fourth

section examines the implementation of

rudimentary symmetric and asymmetric

cryptography on four hardware platforms, and the

sixth section discusses more complex Elliptic

Curve Cryptography (ECC). Our findings suggest

that hardware is not always the best option.

4.Optimization opportunities are revealed by a

comprehensive benchmarking study of vendor

drivers integrated into the system (7). All of our

software may be found at https://github.com/

inetrg/EWSN-2021.

RIOT's Cryptographic Functions

Here, we present the architecture and

implementation of a crypto-subsystem that may

compare well across different libraries and

operating systems. The RIOT [8] open-source

operating system for low-end IoT microcontrollers

serves as the foundation for our implementation.

We choose RIOT because it is portable across

several architectures (8-bit, 16-bit, and 32-bit

CPUs), has a scheduler that allows for set priority

and pre-emption, manages power consumption well

(see RFC 3636), and offers a robust hardware

abstraction layer. In today's systems, cryptographic

functions are often implemented as software [18].

Alternately, third-party libraries may be integrated

through the package system. Wolf Crypt [43], an

embedded library for symmetric and asymmetric

crypto, Ciera [10], which implements common

building blocks for symmetric crypto, Tiny Crypt

[20], and micro-etc(uECC) [21], both particularly

minimising memory, and Relic [4], which

contributes a comprehensive list of symmetric and

asymmetric cryptographic schemes with particular

support for many elliptic curves, are all included in

RIOT. For this reason, these external libraries have

not been ported to use any APIs provided by the

operating system. Our design idea is broad enough

to include these elements and can be easily adapted

to accommodate more hardware platforms and

libraries.

Important Things to Think About With

the Design

The ability to use cryptographic hardware is a

feature of modern operating systems. A driver is

software that operates the device and implements

an operating system-independent application

programming interface (API). Vendors supply a

library in this paper's five example use cases so that

users may perform low-level operations. Design

considerations for integrating these and future

cryptographic components are presently under

discussion.

Interoperability with Vendor Drivers

There is a broad range of functionality across

vendor drivers. We believe, however, that these

implementations should be used to take advantage

of specialised vendor expertise, testing, and the

possibility of long-term maintenance. During the

firmware compilation process, RIOT's package

subsystem will clone, compile, and link to external

repositories. This makes it such that updates to

third-party programmes don't need to be made

inside the OS itself. To facilitate the incorporation

of third-party code into the underlying system, we

offer software wrappers and implement vendor

libraries as RIOT packages. It is important to note

that, as we shall demonstrate in Section 7, vendor

libraries may not always provide optimal

performance since they are often developed in a

generic manner.

Abstraction from Context

In order to work, cryptographic algorithms rely on

a secret state (con text struct). Each instance of a

driver receives its own, and how much is allocated

for it relies on the revealed state of the vendor's

implementation, which often contains its own set of

hardware-specific components. When interacting

with the operating system, a context struct must

abstract vendor-specific details and implement

standard OS interfaces. Because of this, all drivers

create a standard context struct that incorporates

OS-specific and vendor-specific features. Since the

context struct varies among backends, API

consumers should avoid deriving from it. Due to

this design choice, many backends cannot perform

the same task simultaneously. We propose three

reasons why this is typical in Internet of Things

deployments: Real-world IoT firmware is purpose-

built for a single task, hence single-core OSes are

not designed for parallel processing I Because of

this, we do not anticipate that crypto-operations

will be heavily parallelized. (ii) Constrained IoT

devices have limited computational and memory

resources. We do this by abstracting the context.

Hardware operations that are performed in

succession are already much faster than software

http://www.ijpast.in/

 ISSN 2229-6107 www.ijpast.in
 Vol 12, Issuse 1 Jan 2022

solutions, and the performance of crypto-

peripherals boosts software solutions by an order of

magnitude (see Section 5).

CombiningSecurity-Related

Components

There are a wide range of crypto-hardware

capabilities among the 117 microcontrollers and

208 boards now supported by RIOT. We provide I

am hardware-agnostic API and (ii) the dynamic

configuration of the crypto subsystem to enable the

construction and usage of crypto-based apps

without prioritising the hardware setup. To

communicate crypto hardware features to the build

system, we use a feature model. When applicable,

our method selects and builds hardware features

and also offers a more robust configuration

interface. As long as it is accurately modelled, this

generic method can handle any hardware

component.

Modular Structure

User-facing APIs are introduced in two flavours by

our layered approach to interacting with various

crypto backends: A single AES block encryption,

for example, is a low-level function that may be

accessed directly using the basic cryptographic

API. For example, you may set up AES to work in

Cipher Block Chaining (CBC) or Electronic Code

Book (ECB) mode with the use of the API for

cryptographic modes. Because each backend is

modelled as a separate module, the build system

can pick and choose which one to use based on its

specifications. The three types of hardware crypto-

acceleration that can be supported by a backend

module (or driver) are I full hardware acceleration,

(ii) partial hardware acceleration, and (iii) no

hardware acceleration. Devices in the periphery, or

those used externally, that provide complete

hardware support for a cryptographic mode form

the foundation of this tier (e.g., AES CBC). When

just the most fundamental cryptographic operations

are supported by the hardware, we have reached the

second level. Software implementations of the

operation mode (such as CBC) need access to

standard cryptographic primitives (e.g., AES block

encryp tion). The software part, on the other hand,

doesn't care what kind of encryption or hash is

being used. The third difficulty setting simulates a

situation in which necessary hardware acceleration

units are unavailable. We've provided an

abstraction of the cryptographic API that makes it

easy to use with a variety of backend

implementations.

Constructing a Measuring Device

Oversight of the Environment

The hardware and its capabilities used for testing

are summarised in Table 1. In our tests, we avoid

using outdated algorithms and implement them on

both cutting-edge (nRF52840 and EFM32) and

more dated (MKW22D) microcontrollers equipped

with peripheral crypo-acceleration. The nRF52840

and EFM32 are two examples of the new

generation of devices with advanced crypto-

peripherals that were designed for easy deployment

in common scenarios. In addition, an external

crypto-chip (ATECC608A) is used, linked to the

system through the I2C bus. The ATECC608A

family of external security components is

impervious to side channel assaults. Except for the

MKW22D, all platforms have a TRNG that is in

accordance with NIST standards (cf., [22] for

background on embedded ran dom number

generation). The ATECC608A is equipped with a

cryptographically secure pseudo-random number

generator (CSPRNG) that is seeded by a genuine

random component. Both the EFM32 and the

MKW22D use hardware hashing to implement

software-assisted HMAC SHA-256. Both the

nRF52840 and the EFM32 have hardware support

for several cypher modes, unlike the MKW22D and

the ATECC608. With the exception of MKW22D,

all other systems support ECC. For cryptographic

operations, both the nRF52840 and the EFM32

provide protected key registers, whereas the

MKW22D provides a timer for each secure

register. The ATECC608A can keep secrets in its

sixteen slots of non-volatile, write-only memory.

To prevent unwanted access, keys are produced and

stored on an external device, which is also

responsible for erasing the keys upon detecting

tampering.

The Effects of Putting New Software in

Place

We performed RIOT on the nRF52840 platform

and compared the results of several software

implementations of SHA-256 and AES-128 offered

by commonly accessible crypto-libraries (Tables 2

and 3). In both situations, an input vector of size

one internal block was used in conjunction with the

cryptographic algorithm (i.e., 64 Byte for SHA-256

and 16 Byte for AES 128). In order to compute a

SHA-256 digest, Relic, Tiny Crypt, and Cifra need

between 190 and 210 s for an init-update-final

sequence. However, Cifra's quicker update speed

comes at the cost of a longer finalisation time due

to the usage of a second copy of the hash value.

With RIOT Core's state update requiring many

modulo operations, the time required is 20 s longer

(FIPS PUB 180-4). In order to work with 32-bit

arithmetic, RIOT provides several endianness

conversions. Although it requires more memory,

wolfCrypt's implementation is extremely efficient

because to its unrolled mixing loop. Turning off

http://www.ijpast.in/

 ISSN 2229-6107 www.ijpast.in
 Vol 12, Issuse 1 Jan 2022

this optimization decreases ROM needs by 500

Bytes at the expense of an additional 100 ms of

processing time for update and final. All

implementations utilise around the same amount of

stack and have roughly the same-sized contexts,

with the exception of Relic, which needs 400 Bytes

more stack for a global array containing initial hash

state values. AES-128 is very sensitive to variations

in software implementation. RIOT, wolf Crypt, and

Relic all have quick initialization times; it only

takes roughly 3 s to set up the state and the AES

key length. Rather of providing a dedicated API

call for initialization, Tiny Crypt takes care of this

internally. Ciera, on the other hand, has the key

schedule (FIPS PUB 197) built in during its lengthy

start-up process (up to 50 s).

 While RIOT performs AES key expansion on each

encrypt/decrypt call, wolf Crypt, Relic, and Tiny

Crypt provide a separate API to initiate the process.

Except for Cifra, the key expansion overhead is

included in the encrypt and decrypt columns in

Table 3. Due to the extra key inversion required

during decryption, encryption is 1.5-3 times

quicker than decryption. [12] For a single block,

RIOT is the quickest implementation, followed by

wolf Crypt and Relic. The implementations rely on

look-up tables (T-tables) that have already been

constructed in advance to increase performance on

32-bit systems. The default approach in Cifra

(unprotected) and Tiny Crypt is based on a

substitution table (S-box). Unexpectedly, Cifra's

(unprotected) S-box implementation scales

similarly to the T-table technique, but Tiny Crypt is

four to ten times slower. This is because of the

redundancy introduced by keeping multiple copies

of the state in both the internal and externally given

locations and by the need of periodically purging

the internal memory. Cifra (w/ protection) offers

countermeasures by default, which increase the

runtime by a factor of 100, since lookup table

implementations are susceptible to side channel

assaults [7, 41], particularly cache attacks.

Acceleration of Cryptographic

Processes using Some Very Simple

Hardware

We next use the crypto hardware we covered in

Section 3.1 to evaluate how quickly certain

cryptographic operations can be performed in

hardware vs. how quickly they can be performed in

software. The same platforms are used to acquire

RIOT core software results, but this time the

crypto-hardware is disabled.

Computer Time

Data lengths of 32 bytes and 512 bytes were

processed at different rates, as shown in Figure 2.

For the CBC mode, we generate both the 128-bit

AES key and the initialization vector at random. A

random 256-bit key is used to initialise the HMAC

SHA-256. Experiments with 512-bit keys were also

conducted, as is sometimes suggested. Inputs are

kept to a minimum. Ini tribalization, encryption,

and decryption times for AES ECB/CBC and SHA-

256 hashing are less than 70 s on both the

nRF52840 and the EFM32 for short inputs (Fig.

2(a)). A more complex algorithm, HMAC SHA-

256 requires at most 250 s on both platforms and is

used for repeated in ternal hash computations. Due

to the short input sequence, hash updates are small

for all configurations. In this case, final is the

trigger that causes the update function to gather 64

Byte of data (SHA-256 internal state) before

beginning a block operation. The MKW22D

requires very little extra time or effort to perform

any task. On that system, AES CBC encryption is

slower than decryption due to the software chaining

of hardware-accelerated AES blocks. In order to

prevent overwriting the input buffer, another copy

is made before encryption but before decryption.

When implemented in hardware, cyphers gain

more— a factor 4–6—over software than hashes

(factor 2–4). (Factor 2–4). A comparison of

software and hardware measurements for the

EFM32 shows the particular power of that

platform. It opera ates at minimal cost using

hardware accelerated operations, in contrast to

software, for which it performs slower than

nRF52840 and MKW22D, since it operates at

lowest CPU frequency. The extra key inversion

makes software-based AES ECB/CBC decryption

twice as slow as encryption (see Section 4). This

extra work is not needed on the physical machine.

As can be seen in Figure 2(a), the ATECC608A is

two orders of magnitude slower than the other

platforms. There are two factors contributing to this

expense. To begin, the vendor library keeps track

of the power state of the device and wakes it up just

before each operation. Second, the microcontroller

must send and receive copies of control instructions

and data through the I2C connection. The longer

AES initialization takes is proportionate to the time

it takes to send the encryption and decryption key

to the device. Due to the fact that AES-128

encryption of 32 Byte takes two block operations,

the transmission of which adds an overhead, cypher

and hash-based methods have a larger performance

gap on the ATECC608A compared to crypto-

peripheral and software support.

Hardware Enhanced Error-Correcting

Code

We provide studies of both hardware and software

elliptic curve encryption systems. When evaluating

http://www.ijpast.in/

 ISSN 2229-6107 www.ijpast.in
 Vol 12, Issuse 1 Jan 2022

the hardware's performance, we take the

nRF52840's peripheral crypto acceleration and the

ATECC608A's external crypto chip into account.

Relic, a library packed with features, and quick, a

basic library with a focus on optimization, are both

used to monitor software performance on the same

platform. By default, Relic is configured to utilise a

precomputation table for scalar multiplication,

which significantly boosts the application's speed

while running. The optimal compromise between

performance and size is achieved by deploying

uECC with the default optimization level of 2. We

evaluate keypair creation, signature generation and

signature verification (ECDSA), and the

development of a shared secret, based on previous

key exchange, using the NIST P-256 elliptic curve

with 256-bit sized keys that is supported by all

hardware and software systems (ECDH). The

maximum size for a secret key or message digest is

32 bytes (256 bits), and signatures are calculated

using 32 bytes. Hardware accelerate Rs employ a

built-in TRNG for key pair generation and

signature. The CSPRNG used for our software

metrics is based on the Secure Hash Algorithm

(SHA-256), and it is seeded. As an additional

measure, we set up both libraries to make use of a

hardware generator; nonetheless, the benefit is still

very little. We did not include these kinds of trials

since their findings did not provide any new

information.

The Consequences of New Driver

Features

Provided by Vendor and Shared

Network Access

The EFM32 (V. PG12) has two independently

operable crpyto-peripherals. In a single-core

system, this concurrent capability is handled

through a driver API that must be asynchronous to

properly arrange peripheral access. The

Figure 2 . Qualitative comparison of thread and

cryptoperipheral activity with (bottom) and without (top) CPU

offloading using DMA.

However, vendor implementations of crypto-

operations stall the CPU. The results of our test

application using the vendor driver are shown in

Figure 1 (top). We launch two identically

prioritised threads, one of which will encrypt data

periodically, while the other will decrypt it. T0

initiates encryption on the CRYPTO0 subsystem.

Until the hardware is finished, T0 has taken over

the CPU. This frees up CRYPTO 0 for use once

again, at which point T1 is automatically triggered

to initiate an encryption.

 Due to the vendor driver's emphasis on

parallelism, CRYPTO 1 is never utilised. We use

Direct Memory Access (DMA) to offload the CPU

in our asynchronous driver implementation. Both

the input data and the encrypted output data are

sent between the device and the peripheral registers

using direct memory access (DMA). The

development of our test application with the

improved driver is seen in Figure 6 (bottom). To

free up the CPU while the peripheral does its thing,

pressing T0 activates CRYPTO 0. When T1 is

scheduled, it forces CRYPTO 1 to begin

encrypting, freeing up processing time. It's

important to take note of the fact that the CPU is

currently idle while both of the peripherals work in

parallel. The OS may plan other activities or enter a

power-saving mode during such period. Every

thread receives a message letting it know when the

auxiliary jobs are done.

Synopsis and Future Prospects

To the best of our knowledge, this work presents

the first systematic comparison of numerous

symmetric and asymmetric cryptographic

algorithms, both in hard- and software

implementations, and consistently assessed on a

wide range of resource-limited, widely-deployed

IoT devices. We demonstrated extensive system

benchmarks for a sample set of crypto-peripherals

and an external security device in order to shed

light on the compromises that must be made in

order to provide safe crypto-hardware support on a

general-purpose operating system for resource-

limited devices. Among our findings are: In terms

of speed and power consumption, crypto-

peripherals are superior than software. The

advantage grows as the duration of the input is

increased. This extends the period that a node may

function. Unfortunately, drivers add unnecessary

memory use. (ii) The scalability of crypto-hardware

in regards to con text sizes and stack usage is on

par with that of crypto-software. Adding more

complexity to a device will naturally cause more

overhead. Despite being rather sluggish for

symmetric crypto-operations, external crypto

devices provide significant performance gains for

asymmetric crypto. Cryptographic operations are

possible on very limited systems due to their low

http://www.ijpast.in/

 ISSN 2229-6107 www.ijpast.in
 Vol 12, Issuse 1 Jan 2022

memory requirements. Additionally, a suite of

hardware-based side-channel countermeasures

offerfurther protection against assaults. The I2C

protocol adds a potential vulnerability to the

system. Extra caution is needed when dealing with

crypto-drivers (iv). Numerous vendor

implementations were discovered to have

significant optimization potentials. In addition, a

flexible environment with many abstraction and

software layers is required for various degrees of

hardware crypto capability. The OS provides this,

which helps with code portability and reuse as well

as taking use of hardware capabilities. We believe

our findings may serve as a basis for future action

to avoid performance issues.

References

[1] M. Al-Zubeida, Z. Zhang, and J. Zhang. Efficient and

Secure ECDSA Algorithm and its Applications: A Survey. Int.

Journal of Communecation Networks and Information

Security (IJCNIS’19), 11(1), 2019.

[2] Apache Software Foundation. Contiki-NG: The OS for

Next Generation IoT Devices. https://github.com/contiki-

ng/contiki-ng, last accessed 10-11-2020.

 [3] Apache Software Foundation. Apache Mynewt.

https://mynewt. apache.org, last accessed 07-17-2020.

 [4] D. F. Aranha, C. P. L. Gouvea, T. Markmann, R. S.

Wahby, and ˆ K. Liao. RELIC is an Efficient LIbrary for

Cryptography. https: //github.com/relic-toolkit/relic, last

accessed 11-25-2020.

[5] ARM Ltd. Mbed OS. https://www.mbed.com, last acc. 07-

17-2020.

[6] ARM Ltd. Mbed TLS. https://tls.mbed.org, l. acc. 07-17-

2020.

[7] C. Ashokkumar, B. Roy, B. S. V. Mandarapu, and B.

Menezes. ”SBox” Implementation of AES Is Not Side Channel

Resistant. Journal of Hardware and Systems Security, 4:86–

97, 2019.

[8] E. Baccelli, C. Gundogan, O. Hahm, P. Kietzmann, M.

Lenders, H. Pe- ¨ tersen, K. Schleiser, T. C. Schmidt, and M.

Wahlisch. RIOT: an Open ¨ Source Operating System for

Low-end Embedded Devices in the IoT. IEEE Internet of

Things Journal, 5(6):4428–4440, December 2018.

 [9] D. J. Bernstein and T. Lange. Faster Addition and

Doubling on Elliptic Curves. In K. Kurosawa, editor, Advances

in Cryptology — ASIACRYPT 2007, volume 4833 of Lecture

Notes in Computer Science, pages 29–50. Springer, Berlin,

Heidelberg, Germany, 2007.

 [10] Cifra. A collection of cryptographic primitives targeted at

embedded use. https://github.com/ctz/cifra, last acc. 10-11-

2020.

[11] F. Conti, R. Schilling, P. D. Schiavone, et al.. An IoT

Endpoint System-on-Chip for Secure and Energy-Efficient

Near-Sensor Analytics. IEEE Trans. on Circuits and Systems

I, 64(9):2481–2494, 2017.

[12] J. Daemen and V. Rijmen. AES Proposal: Rijndael, 1999.

[13] R. de Clercq, L. Uhsadel, A. Van Herrewege, and I.

Verbauwhede. Ultra Low-Power Implementation of ECC on

the ARM Cortex-M0+. In Proceedings of the 51st Annual

Design Automation Conference, DAC ’14, pages 1–6, New

York, NY, USA, 2014. ACM.

[14] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - A

Lightweight and ¨ Flexible Operating System for Tiny

Networked Sensors. In IEEE Local Computer Networks

(LCN), pages 455–462, 2004. IEEE ComSoc.

 [15] A. Durand, P. Gremaud, J. Pasquier, and U. Gerber.

Trusted Lightweight Communication for IoT Systems Using

Hardware Security. In 9th International Conference on the

Internet of Things (IoT ’19), pages 1–4, New York, NY, USA,

2019. ACM.

[16] E. Frimpong and A. Michalas. SeCon-NG: Implementing

a Lightweight Cryptographic Library Based on ECDH and

ECDSA for the Development of Secure and Privacy-

Preserving Protocols in Contiki-NG. In 35th Symposium on

Applied Computing (SAC ’20), pages 767–769, New York, NY,

USA, 2020. ACM.

 [17] A. H. Gerez, K. Kamaraj, R. Nofal, Y. Liu, and B.

Dezfouli. Energy and Processing Demand Analysis of TLS

Protocol in Internet of Things Applications. In International

Workshop on Signal Processing Systems (SiPS ’18), pages

312–317. IEEE, 2018.

[18] C. Gundogan, C. Ams ¨ uss, T. C. Schmidt, and M. W ¨

ahlisch. IoT Con- ¨ tent Object Security with OSCORE and

NDN: A First Experimental Comparison. In Proc. of 19th

IFIP Networking Conference, pages 19–27, Piscataway, NJ,

USA, June 2020. IEEE Press.

[19] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C.

Shantz. Comparing Elliptic Curve Cryptography and RSA on

8-bit CPUs. In M. Joye and J.-J. Quisquater, editors,

Cryptographic Hardware and Embedded Systems - CHES

2004, vol. 3156 of LNCS, pages 119–132, 2004.

 [20] Intel Corporation. TinyCrypt Cryptographic Library.

https:// github.com/intel/tinycrypt, last accessed 07-17-2020,

2017.

[21] Ken MacKay. micro-ecc. http://kmackay.ca/micro-ecc/,

last accessed 10-11-2020.

[22] P. Kietzmann, T. C. Schmidt, and M. Wahlisch. A

Guideline on Pseu- ¨ dorandom Number Generation (PRNG)

in the IoT. Technical Report arXiv:2007.11839, Open Archive:

arXiv.org, July 2020.

[23] K. H. Kim, J. Choe, S. Y. Kim, N. Kim, and S. Hong.

Speeding up Elliptic Curve Scalar Multiplication without

Precomputation. IACR Cryptol. ePrint Arch., (Report

2017/669), 2017.

http://www.ijpast.in/

